Volver a Guía
Ir al curso
CURSO RELACIONADO
Análisis Matemático 66
2025
GUTIERREZ (ÚNICA)
¿Te está ayudando la guía resuelta?
Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰
Ir al curso
ANÁLISIS MATEMÁTICO 66 CBC
CÁTEDRA GUTIERREZ (ÚNICA)
4. Compruebe que el polinomio de Taylor de orden $n$ de la función $f(x)=e^{x}$ es $p(x)=1+\frac{x}{1 !}+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\ldots+\frac{x^{n}}{n !}$.
Respuesta
En el Ejercicio 3 (item g) ya nos habíamos dado cuenta que para $f(x) = e^x$, todas sus derivadas evaluadas en $x=0$ nos iban a dar $1$. En su momento calculamos el polinomio de Taylor de orden $5$ y nos había quedado así:
Reportar problema
$ p(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} $
Ahora, te das cuenta que si quisiéramos agregarle un orden más, por ejemplo, hasta el $6$, simplemente agregaría esto:
$ p(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} +\frac{x^6}{6!} $
(porque ya sé que $f^{(6)}(0) = 1$)
En particular, si me quiero ir hasta el orden $n$ (donde $n$ es el natural que se nos ocurra), la forma que va a tener este polinomio es
$p(x)=1+x +\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\ldots+\frac{x^{n}}{n !}$
como nos dice el enunciado :)
🤖
¿Tenés dudas? Pregúntale a ExaBoti
Asistente de IA para resolver tus preguntas al instante🤖
¡Hola! Soy ExaBoti
Para chatear conmigo sobre este ejercicio necesitas iniciar sesión
Confirmar eliminación
¿Estás segurx de que quieres eliminar esta respuesta? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar esta respuesta? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar este comentario? Esta acción no se puede deshacer.